Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nutrients ; 16(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613035

RESUMO

Lactose intolerance, which affects about 65-75% of the world's population, is caused by a genetic post-weaning deficiency of lactase, the enzyme required to digest the milk sugar lactose, called lactase non-persistence. Symptoms of lactose intolerance include abdominal pain, bloating and diarrhea. Genetic variations, namely lactase persistence, allow some individuals to metabolize lactose effectively post-weaning, a trait thought to be an evolutionary adaptation to dairy consumption. Although lactase non-persistence cannot be altered by diet, prebiotic strategies, including the consumption of galactooligosaccharides (GOSs) and possibly low levels of lactose itself, may shift the microbiome and mitigate symptoms of lactose consumption. This review discusses the etiology of lactose intolerance and the efficacy of prebiotic approaches like GOSs and low-dose lactose in symptom management.


Assuntos
Intolerância à Lactose , Humanos , Intolerância à Lactose/genética , Lactose , Lactase/genética , Dor Abdominal , Evolução Biológica , Prebióticos
3.
Nutrients ; 15(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38068800

RESUMO

Whey protein isolate (WPI) consists of an array of proteins and peptides obtained as a byproduct of the cheesemaking process. Research suggests that WPI, along with its peptides such as glycomacropeptide (GMP), possesses immunomodulatory properties. These properties hold potential for alleviating the adverse effects of inflammatory conditions such as inflammatory bowel disease. Although promising, the immunoregulatory properties of the digested forms of WPI and GMP-those most likely to interact with the gut immune system-remain under-investigated. To address this knowledge gap, the current study examined the effects of in vitro-digested WPI and GMP, in vivo-digested WPI, and undigested WPI and GMP on the secretion of pro-inflammatory cytokines (TNF-α and IL-1ß) in lipopolysaccharide-stimulated macrophage-like cells. Our results indicate that digested WPI and GMP reduced the expression of TNF-α and IL-1ß, two pro-inflammatory cytokines. Whole WPI had no effect on TNF-α but reduced IL-1ß levels. In contrast, in vivo-digested WPI reduced TNF-α but increased IL-1ß. Undigested GMP, on the other hand, increased the secretion of both cytokines. These results demonstrate that digestion greatly modifies the effects of WPI and GMP on macrophages and suggest that digested WPI and GMP could help mitigate gastrointestinal inflammation. Further clinical studies are necessary to determine the biological relevance of WPI and GMP digestion products within the gut and their capacity to influence gut inflammation.


Assuntos
Macrófagos , Fator de Necrose Tumoral alfa , Animais , Bovinos , Proteínas do Soro do Leite/farmacologia , Proteínas do Soro do Leite/metabolismo , Macrófagos/metabolismo , Inflamação , Soro do Leite/metabolismo
4.
Food Sci Biotechnol ; 32(13): 1949, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37781050

RESUMO

[This corrects the article DOI: 10.1007/s10068-020-00811-w.].

5.
Nutrients ; 15(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37836457

RESUMO

Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that affects 10-15% of the global population and presents symptoms such as abdominal discomfort, bloating and altered bowel habits. IBS is believed to be influenced by gut microbiota alterations and low-grade inflammation. Bovine kappa-casein glycomacropeptide (GMP), a bioactive dairy-derived peptide, possesses anti-adhesive, prebiotic and immunomodulatory properties that could potentially benefit IBS patients. This pilot study investigated the effects of daily supplementation with 30 g of GMP for three weeks on gut health in five people with IBS. We assessed alterations in gut microbiota composition, fecal and blood inflammatory makers, and gut-related symptoms before, during and after the GMP feeding period. The results revealed no changes in fecal microbiota, subtle effects on systemic and intestinal immune makers, and no changes in gut-related symptoms during and after the GMP supplementation. Further research is needed to assess the potential benefits of GMP in IBS patients, including the examination of dosage and form of GMP supplementation.


Assuntos
Gastroenteropatias , Síndrome do Intestino Irritável , Humanos , Adulto , Animais , Bovinos , Síndrome do Intestino Irritável/tratamento farmacológico , Caseínas/farmacologia , Caseínas/uso terapêutico , Projetos Piloto , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico
6.
Nutrients ; 15(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37764775

RESUMO

Irritable bowel syndrome (IBS) is a common gastrointestinal disorder marked by chronic abdominal pain, bloating, and irregular bowel habits. Effective treatments are still actively sought. Kappa-casein glycomacropeptide (GMP), a milk-derived peptide, holds promise because it can modulate the gut microbiome, immune responses, gut motility, and barrier functions, as well as binding toxins. These properties align with the recognized pathophysiological aspects of IBS, including gut microbiota imbalances, immune system dysregulation, and altered gut barrier functions. This review delves into GMP's role in regulating the gut microbiome, accentuating its influence on bacterial populations and its potential to promote beneficial bacteria while inhibiting pathogenic varieties. It further investigates the gut microbial shifts observed in IBS patients and contemplates GMP's potential for restoring microbial equilibrium and overall gut health. The anti-inflammatory attributes of GMP, especially its impact on vital inflammatory markers and capacity to temper the low-grade inflammation present in IBS are also discussed. In addition, this review delves into current research on GMP's effects on gut motility and barrier integrity and examines the changes in gut motility and barrier function observed in IBS sufferers. The overarching goal is to assess the potential clinical utility of GMP in IBS management.

7.
Nutrients ; 15(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764864

RESUMO

Although whey protein isolate (WPI) has been shown to be immunomodulatory, its ability to modulate production of a broad array of inflammatory markers has not previously been investigated in healthy adults. We investigated the effects of daily supplementation with 35 g of WPI for 3 weeks on inflammatory marker concentrations in the blood serum and feces of 14 older adult subjects (mean age: 59). Serum was analyzed using a multiplex assay to quantify the cytokines IFN-γ, IL-1ß, IL-1RA, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL-17A and TNF-α. Fecal samples were analyzed using an ELISA for the inflammatory markers calprotectin and lactoferrin. Our results yielded high inter-subject variability and a significant proportion of cytokine concentrations that were below our method's limit of quantification. We observed decreases in serum IL-12p70 in the washout phase compared with baseline, as well as the washout stage for fecal lactoferrin relative to the intervention stage. Serum IL-13 was also significantly reduced during the intervention and washout stages. Our data suggest that whey protein supplementation did not significantly alter most inflammatory markers measured but can alter concentrations of some inflammatory markers in healthy older adults. However, our study power of 35% suggests the number of participants was too low to draw strong conclusions from our data.


Assuntos
Interleucina-13 , Lactoferrina , Humanos , Idoso , Pessoa de Meia-Idade , Proteínas do Soro do Leite , Soro do Leite , Interleucina-12 , Citocinas , Suplementos Nutricionais
8.
J Nutr ; 153(9): 2598-2611, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423385

RESUMO

BACKGROUND: Donor human milk banks use Holder pasteurization (HoP; 62.5°C, 30 min) to reduce pathogens in donor human milk, but this process damages some bioactive milk proteins. OBJECTIVES: We aimed to determine minimal parameters for high-pressure processing (HPP) to achieve >5-log reductions of relevant bacteria in human milk and how these parameters affect an array of bioactive proteins. METHODS: Pooled raw human milk inoculated with relevant pathogens (Enterococcus faecium, Staphylococcus aureus, Listeria monocytogenes, Cronobacter sakazakii) or microbial quality indicators (Bacillus subtilis and Paenibacillus spp. spores) at 7 log CFU/mL was processed at 300-500 MPa at 16-19°C (due to adiabatic heating) for 1-9 min. Surviving microbes were enumerated using standard plate counting methods. For raw milk, and HPP-treated and HoP-treated milk, the immunoreactivity of an array of bioactive proteins was assessed via ELISA and the activity of bile salt-stimulated lipase (BSSL) was determined via a colorimetric substrate assay. RESULTS: Treatment at 500 MPa for 9 min resulted in >5-log reductions of all vegetative bacteria, but <1-log reduction in B. subtilis and Paenibacillus spores. HoP decreased immunoglobulin A (IgA), immunoglobulin M (IgM), immunoglobulin G, lactoferrin, elastase and polymeric immunoglobulin receptor (PIGR) concentrations, and BSSL activity. The treatment at 500 MPa for 9 min preserved more IgA, IgM, elastase, lactoferrin, PIGR, and BSSL than HoP. HoP and HPP treatments up to 500 MPa for 9 min caused no losses in osteopontin, lysozyme, α-lactalbumin and vascular endothelial growth factor. CONCLUSION: Compared with HoP, HPP at 500 MPa for 9 min provides >5-log reduction of tested vegetative neonatal pathogens with improved retention of IgA, IgM, lactoferrin, elastase, PIGR, and BSSL in human milk.


Assuntos
Lactoferrina , Leite Humano , Recém-Nascido , Humanos , Leite Humano/microbiologia , Viabilidade Microbiana , Fator A de Crescimento do Endotélio Vascular , Pasteurização/métodos , Imunoglobulina A , Imunoglobulina M , Elastase Pancreática
9.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37504497

RESUMO

Partial digestion of milk proteins leads to the formation of numerous bioactive peptides. Previously, our research team thoroughly examined the decades of existing literature on milk bioactive peptides across species to construct the milk bioactive peptide database (MBPDB). Herein, we provide a comprehensive update to the data within the MBPDB and a review of the current state of research for each functional category from in vitro to animal and clinical studies, including angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, antioxidant, dipeptidyl peptidase (DPP)-IV inhibitory, opioid, anti-inflammatory, immunomodulatory, calcium absorption and bone health and anticancer activity. This information will help drive future research on the bioactivities of milk peptides.

10.
Am J Clin Nutr ; 117 Suppl 1: S28-S42, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37173059

RESUMO

Human milk is universally recognized as the preferred food for infants during the first 6 mo of life because it provides not only essential and conditionally essential nutrients in necessary amounts but also other biologically active components that are instrumental in protecting, communicating important information to support, and promoting optimal development and growth in infants. Despite decades of research, however, the multifaceted impacts of human milk consumption on infant health are far from understood on a biological or physiological basis. Reasons for this lack of comprehensive knowledge of human milk functions are numerous, including the fact that milk components tend to be studied in isolation, although there is reason to believe that they interact. In addition, milk composition can vary greatly within an individual as well as within and among populations. The objective of this working group within the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project was to provide an overview of human milk composition, factors impacting its variation, and how its components may function to coordinately nourish, protect, and communicate complex information to the recipient infant. Moreover, we discuss the ways whereby milk components might interact such that the benefits of an intact milk matrix are greater than the sum of its parts. We then apply several examples to illustrate how milk is better thought of as a biological system rather than a more simplistic "mixture" of independent components to synergistically support optimal infant health.


Assuntos
Aleitamento Materno , Leite Humano , Feminino , Lactente , Humanos , Fenômenos Fisiológicos da Nutrição do Lactente
11.
Foods ; 12(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36673392

RESUMO

Kappa-casein-derived caseinomacropeptide (CMP)-a 64-amino-acid peptide-is released from kappa-casein after rennet treatment and is one of the major peptides in whey protein isolate (WPI). CMP has anti-inflammatory and antibacterial activities. It also has two major amino acid sequences with different modifications, including glycosylation, phosphorylation, and oxidation. To understand the potential biological role of CMP within the human body, there is a need to examine the extent to which CMP and CMP-derived fragments survive across the digestive tract, where they can exert these functions. In this study, three solid-phase extraction (SPE) methods-porous graphitized carbon (PGC), hydrophilic interaction liquid chromatography (HILIC), and C18 chromatography-were evaluated to determine which SPE sorbent is the most efficient to extract intact CMP and CMP-derived peptides from WPI and intestinal digestive samples prior to LC-MS/MS acquisition. The C18 SPE sorbent was the most efficient in extracting intact CMP and CMP-derived peptides from WPI, whereas the PGC SPE sorbent was the most efficient in extracting CMP-derived peptides from intestinal digesta samples.

12.
Food Chem ; 398: 133864, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35969996

RESUMO

The ability of bovine κ-casein-derived caseinomacropeptide (CMP) to exert bioactivity in the human gut depends on its digestive survival. Sampling from the human jejunum after feeding CMP and top-down glycopeptidomics analysis facilitates the determination of CMP survival. To reduce interference from non-target molecules in mass spectrometric analysis, CMP must be isolated from digestive fluid. To identify an optimal extraction method, this study compared the profiles of CMP extracted from feeding material (commercial CMP in water) and digestive fluid by ethanol precipitation, perchloric acid (PCA) precipitation, and ultrafiltration. Ethanol precipitation yielded the highest ion abundances for aglycosylated CMP and glycosylated CMP in both feeding material and jejunal samples. Notably, PCA precipitation yielded the highest abundance of partially digested CMP-derived fragments in jejunal samples. Overall, ethanol precipitation was the most effective among the methods tested for intact CMP extraction from jejunal fluids, whereas PCA precipitation was optimal for extraction of CMP fragments.


Assuntos
Caseínas , Jejuno , Animais , Bovinos , Humanos , Caseínas/química , Etanol , Fragmentos de Peptídeos , Percloratos , Ultrafiltração
14.
Front Nutr ; 9: 926814, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185694

RESUMO

Background: Donor human milk should be processed to guarantee microbiological safety prior to infant feeding, but this process can influence the structure and quantity of functional proteins. Objective: The aim of this study was to determine the effect of thawing, homogenization, vat-pasteurization (Vat-PT), retort sterilization (RTR) and ultra-high-temperature (UHT) processing on the structure of bioactive proteins in donor milk. Methods: Pooled donor milk was either not treated (Raw) or treated with an additional freeze-thaw cycle with and without homogenization, Vat-PT, RTR with and without homogenization, and UHT processing with and without homogenization. Overall protein retention was assessed via sodium-dodecyl sulfate (SDS-PAGE), and the immunoreactivity of 13 bioactive proteins were assessed via enzyme-linked immunosorbent assay (ELISA). Results: Freeze-thawing, freeze-thawing plus homogenization and Vat-PT preserved all the immunoglobulins (sIgA/IgA, IgG, IgM) in donor milk, whereas RTR and UHT degraded almost all immunoglobulins. UHT did not alter osteopontin immunoreactivity, but Vat-PT and retort decreased it by ~50 and 70%, respectively. Freeze-thawing with homogenization, Vat-PT and UHT reduced lactoferrin's immunoreactivity by 35, 65, and 84%, respectively. Lysozyme survived unaltered throughout all processing conditions. In contrast, elastase immunoreactivity was decreased by all methods except freeze-thawing. Freeze-thawing, freeze-thawing plus homogenization and Vat-PT did not alter polymeric immunoglobulin receptor (PIGR) immunoreactivity, but RTR, RTR plus homogenization and UHT increased detection. All heat processing methods increased α-lactalbumin immunoreactivity. Vat-PT preserved all the growth factors (vascular/endothelial growth factor, and transforming growth factors ß1 and ß2), and UHT treatments preserved the majority of these factors. Conclusion: Different bioactive proteins have different sensitivity to the treatments tested. Overall, Vat-PT preserved more of the bioactive proteins compared with UHT or RTR. Therefore, human milk processors should consider the impact of processing methods on key bioactive proteins in human milk.

15.
Front Pediatr ; 10: 917179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016873

RESUMO

Background and aims: Plasmin in human milk partially hydrolyzes milk proteins within the mammary gland and may enhance the hydrolysis of milk proteins within the infant's stomach. This study examined the effects of extremely preterm (EP)-, very preterm (VP)-, and term-delivery on plasmin activity and the concentrations of plasminogen activators [urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA)], plasminogen activator inhibitor type 1 (PAI-1) and the complexes of PAI-1/uPA and PAI-1/tPA in human milk. Materials and methods: Human milk samples were collected from mothers who delivered extremely preterm infants [24-27 weeks gestational age (GA), n = 20], very preterm infants (28-32 weeks GA, n = 12), and term infants (38-39 weeks GA, n = 8) during 2-72 days postnatally. Plasmin activity was determined using fluorometric substrate assay, whereas concentrations of uPA, tPA, PAI-1, the PAI-1/uPA complex and the PAI-1/tPA complex were quantified by ELISA. Results: Plasmin activity, uPA and tPA were detected in all human milk samples, PAI-1 and the PAI-1/uPA complex were present in 42.5 and 32.5% of milk samples, respectively, and the PAI-1/tPA complex was not detected. Plasmin activity was correlated negatively with postnatal age and postmenstrual age (PMA) in the VP group and positively with postnatal age in the term group. uPA and tPA concentrations decreased with increasing postnatal age in both EP and VP groups but did not correlate in the term group. uPA concentration was correlated positively with GA in the VP group and tended to be elevated with increasing GA in the combined three groups. In contrast, tPA concentrations were correlated negatively with GA and PMA in the combined three groups (P < 0.008) and with PMA in the EP and VP groups. PAI-1 concentration tended to be correlated positively with postnatal age in the combined three groups. No correlation was detected with the PAI-1/uPA complex. Conclusion: Premature delivery impacted the plasmin activity and the concentrations of uPA, tPA, and PAI-1 in human milk. Whether these changes in milk plasminogen activators and inhibitors have a role in balancing the proteolytic digestion of premature infants remains to be investigated.

16.
J Agric Food Chem ; 70(23): 7077-7084, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35608530

RESUMO

Human milk-protein-derived peptides exhibit an array of bioactivities. Certain bioactivities cannot be exerted unless the peptides are absorbed across the gastrointestinal lumen into the bloodstream. The purpose of study was to determine which peptides derived from in vitro digestion of human milk could cross human intestinal Caco-2 cell monolayers. Our results showed that the numbers of peptides absorbed by the Caco-2 cell monolayer were different at different concentrations (44 peptides out of 169 peptides detected at 10 µg/mL, 124 peptides out of 204 peptides detected at 100 µg/mL, and 175 peptides out of 236 peptides detected at 1000 µg/mL). Four peptides (NLHLPLP (ß-casein [138-144]), PLAPVHNPI (ß-casein [216-224]), PLMQQVPQPIPQ (ß-casein [148-159]), and FDPQIPK (ß-casein [126-132])) crossed to the basolateral chamber of the Caco-2 monolayer incubated with peptides at all three concentrations. Among the peptides identified in the basolateral chambers, three peptides (NLHLPLP (ß-casein [138-144]), LENLHLPLP (ß-casein [136-144]), and QVVPYPQ (ß-casein [182-188])) are known ACE-inhibitors; one peptide (LLNQELLLNPTHQIYPV (ß-casein [197-213])) is antimicrobial, and another peptide (QVVPYPQ (ß-casein [182-188])) has antioxidant activity. These findings indicate that specific milk peptides may be able to reach the bloodstream and exert bioactivity.


Assuntos
Caseínas , Leite Humano , Animais , Disponibilidade Biológica , Células CACO-2 , Caseínas/metabolismo , Digestão , Humanos , Leite/metabolismo , Leite Humano/metabolismo , Peptídeos/metabolismo
17.
JPEN J Parenter Enteral Nutr ; 46(5): 1119-1129, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34687453

RESUMO

BACKGROUND: Although human-milk feeding reduces the risk of necrotizing enterocolitis (NEC) in preterm infants compared with formula feeding, the exact risk-reduction mechanism remains unknown. As NEC occurs at the distal small intestine in which digestion has occurred, we applied proteomics to examine the extent to which colostrum proteins survive simulated infant in vitro-digestion and, thus, have potential to exert biological function. METHODS: Ten preterm colostrum samples were left undigested or in vitro-digested, and lipopolysaccharide (LPS)-binding protein, soluble cluster of differentiation 14, and tumor necrosis factor (TNF) receptors I and II were measured using enzyme-linked immunosorbent assay in all undigested and in vitro-digested samples. Fully differentiated Caco-2 cells were exposed to digested colostrum samples before stimulation with LPS or TNF or no stimulation. Inflammation (interleukin-8) and cytotoxicity (lactate dehydrogenase) were measured. Proteomic analyses of undigested and in vitro-digested samples were done using mass spectrometry. RESULTS: We found that most proteins in colostrum are significantly, if not completely, degraded after in vitro-digestion. We found select individual and combination digestion-resistant proteins that were positively correlated with LPS- and TNF-induced inflammation. CONCLUSION: These results indicate the importance of considering the extent to which specific dietary compounds survive digestion to reach their site of claimed action (distal intestine) and that some digestion-resistant proteins may be contributing toward "low-grade" inflammation that is necessary to promote intestinal growth and maturation during early infancy. This work provides the most detailed understanding of human-milk protein degradation with simulated infant in vitro-digestion to date.


Assuntos
Colostro , Enterocolite Necrosante , Células CACO-2 , Colostro/química , Colostro/metabolismo , Digestão , Enterocolite Necrosante/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Inflamação/metabolismo , Intestinos/patologia , Lipopolissacarídeos/metabolismo , Gravidez , Proteômica
18.
J Nutr ; 152(2): 429-438, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34850069

RESUMO

BACKGROUND: Bovine milk κ-casein-derived caseinomacropeptide (CMP) is produced in large quantities during cheese-making and has various biological activities demonstrated via in vitro and in vivo experiments. Previous studies examined protein degradation and peptide release after casein or whey protein consumption. However, whether purified intact CMP that is partially glycosylated survives intact to its presumed site of bioactivity within the gut remains unknown. OBJECTIVES: The aim of this study was to determine the extent to which purified intact CMP (including glycosylated forms) is digested into peptide fragments within the jejunum of healthy human adults after consumption. METHODS: Jejunal fluids were collected from 3 adult participants (2 men and 1 woman, age: 27 ± 7 y; BMI: 23 ± 1 kg/m2) for 3 h after consuming 37.5 g of purified intact CMP. CMP and CMP-derived peptides were isolated from the collected jejunal fluids by ethanol precipitation and solid-phase extraction and identified by MS-based top-down glycopeptidomics. Relative abundances of CMP and CMP-derived peptides were compared qualitatively between the feed and the jejunal fluids. RESULTS: Intact CMP was dominant in feeding material, accounting for 90% of the total ion abundance of detected peptides, and in very low abundance (<2%) in the jejunal fluids. CMP-derived fragment peptides ranging from 11 to 20 amino acids in length were predominant (accounting for 68-88% of the total peptide ion abundance) in jejunal fluids during 1-3 h post consumption. CONCLUSIONS: This study demonstrates that intact CMP (including glycosylated forms) is mostly digested in the human jejunum, releasing a wide array of CMP-derived peptide fragments. Some of the CMP-derived peptides with high homology to known bioactive peptides consistently survived across 3 h of digestion. Therefore, future research should examine the biological effects of the partially digested form-the CMP-derived fragments-rather than those of intact CMP.


Assuntos
Caseínas , Jejuno , Adulto , Caseínas/química , Feminino , Humanos , Jejuno/metabolismo , Masculino , Fragmentos de Peptídeos , Peptídeos/metabolismo , Adulto Jovem
19.
J Nutr ; 152(1): 331-342, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34601601

RESUMO

BACKGROUND: Milk proteins contain many encrypted bioactive peptides. Whether these bioactive peptides are released in the infant intestine and exert immunomodulatory activity remains unknown. OBJECTIVE: This study examined in vitro immunomodulatory activities of peptides from in vitro- and in vivo-digested human milk. METHODS: Peptides were extracted from in vitro-digested human milk and pooled intestinal samples from 8 infants fed human milk. Peptides extracted from in vitro-digested samples were fractionated. The in vitro effects of these peptides and fractions on the secretion of TNF-α and IL-8 in LPS-treated human immune THP-1 macrophages were evaluated. The significance of differences between in vitro peptide fraction treatment and control on cytokine production was analyzed by t test. LC-MS/MS-based peptidomics was conducted to identify the peptides. The peptides were screened for potential bioactivity using a sequence homology search using the Milk Bioactive Peptide Database (MBPDB). RESULTS: Six fractions of the peptide mixture extracted from the in vitro-digested human milk significantly inhibited TNF-α production by LPS-challenged THP-1 macrophages. Fractions F4, F8, F11, F14, and F17 attenuated IL-8 secretion, and F6/7 and F18 increased IL-8 secretion. Peptides extracted from the pooled in vivo intestinal samples attenuated both TNF-α and IL-8 secretion. There were 266 and 418 peptides identified in the in vitro and in vivo samples, respectively. Among the peptides, 34 and 50 in the in vitro and in vivo samples, respectively, had >80% sequence similarity to bioactive peptides in the MBPDB. CONCLUSIONS: Peptides released by in vitro and in vivo infant digestion of human milk were immunomodulatory in human immune cells; fractions F4, F8, and F11 were anti-inflammatory; and F6/7 and F18 were proinflammatory. Thirteen peptides were present in all fractions with anti-inflammatory activity, and 38 peptides were present in all fractions with proinflammatory activity. These peptides potentially contributed to the observed immunomodulatory activity of the peptide mixtures.


Assuntos
Leite Humano , Espectrometria de Massas em Tandem , Cromatografia Líquida , Digestão , Humanos , Macrófagos/metabolismo , Proteínas do Leite/metabolismo , Leite Humano/química , Peptídeos/metabolismo , Peptídeos/farmacologia
20.
Foods ; 10(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34574138

RESUMO

Caseinomacropeptide (CMP) is released from bovine kappa-casein after rennet treatment and is one of the major peptides in whey protein isolate. CMP has in vitro anti-inflammatory and antibacterial activities. CMP has two major amino acid sequences with different modifications, including glycosylation, phosphorylation and oxidation. However, no previous work has provided a comprehensive profile of intact CMP. Full characterization of CMP composition and structure is essential to understand the bioactivity of CMP. In this study, we developed a top-down glycopeptidomics-based analytical method to profile CMP and CMP-derived peptides using Orbitrap mass spectrometry combined with nano-liquid chromatography with electron-transfer/higher-energy collision dissociation. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) spectra of CMPs were annotated to confirm peptide sequence, glycan composition and other post-translational modifications using automatic data processing. Fifty-one intact CMPs and 159 CMP-derived peptides were identified in four samples (one CMP standard, two commercial CMP products and one whey protein isolate). Overall, this novel approach provides comprehensive characterization of CMP and CMP-derived peptides and glycopeptides, and it can be applied in future studies of product quality, digestive survival and bioactivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...